
Kubernetes Security
Best Practices:
Definitive Guide for
Security Professionals

The Makers of Kubescape

Ben Hirschberg
CTO and Co-Founder, ARMO

Table of contents

Opening Words 3

4

7

Introduction

Kubernetes Security Best Practices: The 4Cs Model

8

What is Kubernetes Security?

Importance of Kubernetes Security

5

6

7

Cluster

Container

Code

Controlling Access to the API Server

Container Runtime Hardening

Scan For Vulnerabilities

Prevent Unwanted Access to the API Server

Multi-tenancy and Workload Isolation

Evolution of built-in Pod-level security controls

Using Kubernetes Secrets for Application Credentials

Enforce Restrictive Network Policies

Protect Nodes

Reduce Container Attack Surface

Use Admission Controllers

8

18

21

7

10

20

15

13

17

9

18

13

12

16

Kubernetes Secrets

Use Trusted Images with Proper Tags

Apply Least Privilege on Access

18

20

Cloud / Colocated

22Implementing Kubernetes Security Best Practices

22

22

23

23

24

Security Frameworks

Security Updates for the Environment

Security Context

Resource Management

Shift Left

25Conclusion

Opening Words

As containerized applications become the norm, the complexities of securing these dynamic,

scalable environments demand a fresh perspective on traditional security practices. While

Kubernetes streamlines deployment and management, it also introduces a new layer of attack

surface, necessitating a nuanced approach to threat mitigation. We must navigate these

complexities by drawing upon the collective knowledge and tools offered by the open-source

Kubernetes community to build a robust Kubernetes security posture. So, buckle up, security

architects and engineers, because in this blog, we'll be diving deep into the evolving

landscape
of Kubernetes security, exploring best practices, pointing out potential pitfalls, and

charting a
course towards securing the ever-expanding containerized frontier.

03

Introduction

Kubernetes, an open-source container orchestration engine, is well known for its ability to

automate the deployment, management, and, most importantly, scaling of containerized

applications.

Running an individual microservice in a single container is almost always safer than running it

as processes in the same VM. To run a container, Kubernetes use the Pod concept (Point Of

Deployment) which is a non-empty set of containers. When a Pod is launched in , it

is hosted in a Kubernetes Node (the abstraction of a machine). A Kubernetes Node can behave

as a “Worker” or a “Master” or both. A Worker node(s) hosts the application Pods in the cluster,

the Master Node(s) hosts the Kubernetes control plane components like API server, Scheduler

and Controller manager. Together, they .

Kubernetes

constitute a cluster

04

c-m
c-m

c-m

c-c-m

c-c-m

c-c-m

c-c-m

c-c-m

c-c-m

c-c-m

api

sched

etcd

Cloud
provider API

Control Plane

Kubernetes cluster

Node Node Node

c-c-m

Cloud controller
manager (optional)

api

Controller
manager

sched Scheduler

Node

etcd

Etcd

(persistence store)

kubelet

Kubelet
kubelet

kubelet kubelet

k-proxy

Kube-proxyk-proxy

k-proxy k-proxy

API serverc-m

Control plane

Source: kubernetes.io

https://www.armosec.io/glossary/kubernetes/
https://www.armosec.io/glossary/kubernetes-cluster/
https://kubernetes.io/docs/concepts/overview/components/

05

What is Kubernetes Security?

Kubernetes orchestrates containerized applications running in the cloud or on-premises.
As a

result, the security of a cluster is determined not only by the configuration of the
cluster, but

also by the security of the infrastructure on which the cluster is deployed.
Applications and

business processes used in and around the cluster, also affect its
security. These concerns

span several security disciplines, ranging from application
security and access control to

network security and vulnerability management.
Furthermore, each discipline is important at

different levels of a Kubernetes cluster
stack. These levels can be thought of abstractly as the

Four Cs: Cloud, Cluster,
Container, and Code.

Securing a Kubernetes cluster means ensuring that each of the Four Cs is configured
and used

in accordance with best practices and organizational security policies. This
includes things like

when a workload is allowed to run, what behavior, permissions, and
capabilities it has

throughout its lifecycle. It also covers who is allowed to access or
configure the cluster or its

underlying infrastructure.

Clusters' security posture must also be constantly re-evaluated in order to keep up with
the

pace of healthy development practices. Automated controls must enable developers
to

identify and remediate security issues quickly and independently in order to meet
business

needs for developer autonomy and allow security to scale with the
organization.

Nodes provide CPU, memory, storage, and networking resources on which the control
plane

can place the pods. Kubernetes nodes must also run a variety of components
supporting the

control plane’s management of the node and its workloads, such as the
kubelet, kube-proxy,

and the container runtime.

06

Importance of Kubernetes Security

The risk posed by a compromise in any single improperly contained cluster workload is
often

equal to the risk posed by complete cluster compromise. An attacker who gains
control of one

cluster node can potentially compromise any other cluster workload.
Using credentials stored

on each cluster node, it is possible to start additional malicious
workloads and access secrets

stored in the cluster. This can develop into lateral
movement to other types of environments,

databases, or other cloud or external
services. Such an attacker can also gain network access

to any networks reachable
from any cluster node, for example to peered on-premises data

centers.

In short, clusters are valuable targets. Each workload, user, and configuration should be
held

to high security standards to prevent the compromise of all cluster resources.

When constructing a defense-in-depth strategy, it is necessary to incorporate numerous

security barriers in various areas; cloud-native security operates similarly and suggests

implementing the same approach. The security techniques of Cloud Native Systems are divided

into four different layers, which is referred to as “The 4C Security Model”: Cloud, Cluster,

Container, Code. Addressing all these layers ensures comprehensive security coverage from

development to deployment. The best practices for Kubernetes can also be classified into

these four categories of the cloud-native approach.

The cloud layer refers to the server infrastructure, whether the provider is a public cloud,

a private cloud, an on-premises datacenter, or some combination of the three. Preparing
the

infrastructure for running a secure Kubernetes environment involves deploying and

configuring various services. While public CSPs are primarily responsible for
safeguarding such

services (e.g., operating system, platform management, and network
implementation), the

default configurations are often not suitable for production, and
customers are still

responsible for many aspects of their own security, like managing
credentials, correctly

configuring the infrastructure, and monitoring and securing their
data.

Kubernetes Security Best
Practices: The 4C Model

Cloud / Colocated

07

The best practice is to limit the network layer access to Kubernetes API server. Depending on

cloud provider, this is usually done by limiting the API server access to a single VPC. When

users need to access the API from outside the VPC, they usually create a VPN service or SSH

server in that specific VPC and using it as a gateway to Kubernetes API.

_Prevent Unwanted Access to the API Server

08

Cluster

Since Kubernetes is the most widely used container orchestration tool, we will
concentrate our

attention on it while discussing cluster security in general. Therefore, all
security

recommendations in this section are limited to safeguarding the cluster itself.

_Controlling Access to the API Server

In addition to restricting API server access at the infrastructure level, there are
additional

considerations for controlling access to the , which limit who
can use it, and

what they are able to use it for.

Each request to the API server is first authenticated to identify the entity making the
request,

then subsequently authorized to ensure the entity has permission to perform
the requested

action., Finally, the content of the request is subjected to admission
control before it is

accepted.

It is important that only connections are used for connections to the API server,
internal

communication within the , and communication between the
control plane and

the To accomplish this, you can provide a TLS certificate and
a TLS private key file to

the API server. You can do this either through a command line
option or a configuration file.

This is a basic security measure and nearly all Kubernetes
distributions (Kind, Minikube,

Rancher, OpenShift, etc.) and managed Kubernetes
services (EKS, GKE, and AKS) come with this

best practice setup.

The Kubernetes API uses two HTTP ports, designated as localhost and secure port, to

communicate. The localhost port does not require TLS, so requests made through this
port will

bypass the authentication and authorization components. Therefore, you must
make sure this

port is not enabled outside of the Kubernetes cluster’s test configuration.

 Kubernetes API

TLS

control plane

kubelet.

https://www.armosec.io/glossary/kubernetes-api/
https://www.armosec.io/glossary/transport-layer-security-tls/
https://www.armosec.io/glossary/kubernetes-control-plane/
https://www.armosec.io/glossary/kubelet/

Service accounts in Kubernetes are used to provide an identity for processes that run in

a Pod. They are used to authenticate and authorize applications and processes that
need to

interact with the Kubernetes API. This identity is critical for the security of a
Kubernetes

cluster, as it controls access to resources and operations. Due to the
potential for security

breaches, service accounts should be thoroughly and regularly
audited, particularly if they are

associated with privileged accounts. To ensure security
and follow the principle of least

privilege, each application should have its own service account. This service account should

only have the necessary permissions for the
specific deployment. It is best to avoid using the

default service account, as it is
automatically mapped to every Pod by default, going against

the principle of least
privilege. To prevent potential security risks, it is important to disable

the automatic
mounting of default service account tokens when creating new pods, especially

if no
individual service account is provided. This helps minimize the risk of unauthorized

access and reduces the chances of creating additional vulnerabilities.

Access to signed certificates (kubeconfigs) and service account tokens should be tightly

controlled. While newer Kubernetes versions use the TokenRequest API to issue
short-lived,

revocable tokens, it is still possible to manually create tokens which never
expire. Similarly,

kubeconfigs can be created without an expiration. Once a user’s
keypair has been signed by

the cluster’s root certificate authority, it cannot be easily
revoked. If such a credential is stolen

or leaked, the only way to ensure cluster security
is to reinstall the whole cluster with a new

root certificate.

09

_Kubernetes Secrets

Secrets in Kubernetes are objects used to hold sensitive information, such as
passwords, keys,

tokens, and many other types of information. Since they are different
from other configuration

objects like “ConfigMaps”, they are handled differently on
multiple levels. This limits the

exploitable attack surface. Secrets are intended to
decouple sensitive values from non-

sensitive configuration which accompanies a
workload. This approach reduces the chances of a

developer unintentionally accessing
or storing sensitive data. Secrets are RBAC-controlled,

namespaced objects (maximum
length: 1 MB), which, unlike ConfigMaps, are kept in tmpfs on

the nodes in order to
prevent ever writing the data to persistent storage.

https://www.armosec.io/blog/revealing-the-secrets-of-kubernetes-secrets/

10

Kubernetes Cluster

Secret

Sensitive Data

Pod

Container

Secret Volume

The API server stores Secrets in etcd in plain text by default, so it's important to enable

encryption in the API server configuration. This way, if an attacker were to access the
etcd data,

they wouldn't be able to read it because they would also need the key used
for encryption.

Kubernetes supports multiple types of encryption schemes for stored
objects, including local

key pairs and CSP-hosted key management systems. Although
Secret values are stored base64-

encoded, this is for data (de-)serialization purposes
and not (!) a substitute for proper

encryption.

_Protect Nodes

Nodes are responsible for the operations of your containerized apps. As such, it is
essential

that nodes are properly hardened to provide a secure computing
environment.

There are numerous individual settings and configuration options to consider when
hardening

a node. Many of these are included in the CIS Benchmark and provide
guidelines for protecting

nodes. These are:

Source: https://livebook.manning.com/book/gitops-and-kubernetes/chapter-7/v-6/57

https://livebook.manning.com/book/gitops-and-kubernetes/chapter-7/v-6/57

11

Enabling SELinux: SELinux adds an extra layer of security by enforcing
mandatory access controls.

It helps protect nodes from unauthorized access and
protects against privilege escalation attacks.

Disabling unnecessary services: By disabling unnecessary services and
daemons, organizations

reduce the attack surface and minimize the potential for
vulnerabilities.

Configuring firewall rules: Implementing proper firewall rules allows organizations
to control

network traffic, block unauthorized access, and protect the nodes from
network-based attacks.

Enabling automatic updates: Enabling automatic updates ensures that the nodes
receive the

latest security patches and bug fixes, protecting against known
vulnerabilities.

Configuring the system time, hostname, DNS servers, NTP servers, and proxy
server:

Properly configuring these settings ensures secure communication,
accurate time

synchronization, and reliable network access for the nodes.

Configuring the system network interfaces: Properly configuring network
interfaces helps

prevent unauthorized access, isolate network traffic, and protect
against attacks targeting the

nodes' network connectivity.

Node hardening in Kubernetes primarily takes place at or above the operating system
level.

This means that the nodes, which are the individual servers in a Kubernetes
cluster, can be

either virtual or physical. The choice between a virtual or physical
environment is often

dictated by the specific needs of the organization or any regulatory
compliance requirements.

Regardless of the environment, the objective of node
hardening remains the same - to

enhance the security of the Kubernetes cluster.
However, care should be taken to evaluate

how the environment changes the security
requirements for a node. Factors like physical

environments which are likely to be
accessed by untrusted parties, or virtualization in a

multi-tenant environment may
impose additional requirements versus running in a

trusted datacenter.

12

The topology and distribution of workloads across the already hardened nodes also
matters

for ensuring cluster availability. For example, a single node serving both control
plane

components and application workloads can be used in a Kubernetes test
environment to

reduce the cost of the testing infrastructure. In a real-world production
environment, it's best

to separate application workloads from control plane components.
This separation is crucial

to minimize risks and support resilience. It protects the control
plane from threats like

malicious activities, malfunctions, resource-intensive processes,
or disruptive behaviours

from other components.

_Multi-tenancy and Workload Isolation

In a typical Kubernetes cluster, multiple users, clients, and applications share the

cluster's resources. To ensure the protection of these resources, it becomes necessary

to enforce boundaries between distinct logical groups of users and their associated
cluster

resources. The degree of separation required can be thought of as a spectrum
from tenants

having full and complete trust of one another to tenants having absolutely
zero trust and

assuming malicious intent by other tenants. At the most extreme end, the
only sure option is

to offer separate Kubernetes clusters to each tenant. This is
sometimes referred to as “hard

multi-tenancy”.

Project

Cluster

Node

Pod Namespace
Container

Container

Source: ARMO

https://www.armosec.io/

13

_Using Kubernetes Secrets for Application Credentials

_Apply Least Privilege on Access

For clusters that can tolerate “softer” isolation, there are a number of Kubernetes
features for

separating workloads to ensure their security and performance.
Namespaces allow grouping

resources of many different types, and serve as a
foundationfor other types of policy

enforcement. Role-Based Access Control (RBAC)
can limit members of one logical tenant to

making API requests only for their own
resources. Network traffic permitted in and out of a pod

can be controlled with
NetworkPolicies, which are also namespace-scoped. Additional

requirements like
requiring resource requests and limits, spreading workloads across

particular groups of
nodes, and preventing the creation of Pods with excessive privileges can

be enforced
by admission controllers.

A Secret is an object in Kubernetes that holds sensitive information like passwords or
tokens

for authentication. It's important to know where and how these sensitive data are
stored and

accessed. This is especially important for applications that are accessible to
the public, as they

may be more vulnerable to security threats. Instead of passing
secrets as environment

variables, it's recommended to mount them as read-only
volumes in containers for increased

security. Reading the secret from a file is less likely
to inadvertently result in the secret being

written to a log file or being accessible to other
applications sharing the environment.

Least privilege is a security concept in which a user, application or service is given the

minimum levels of access necessary to complete a function. This principle is a proactive
step

towards protecting system information and functionality from faults and malicious
behavior.

14

Principle of Least Privilege (PoLP)

Remove or
Restrict

Privileges

Only
Necessary
Services

and Apps

Access

Most Kubernetes actions require authorization. Once a user has been logged in

(authenticated), their request to access the cluster’s resources will undergo
authorization to

determine if the user has the necessary permissions.

determines whether an entity can call the Kubernetes API to
perform a specific action on a

specific resource.

RBAC authorization makes use of the rbac.authorization.k8s.io API group to make
authorization

decisions. Activating RBAC requires an authorization flag set to a
comma-separated list that

contains RBAC and then restarting the API server.

Role-based
Access Control (RBAC)

Once RBAC has been enabled, it is managed via several types of Kubernetes
resources. Roles

and their associated permissions are stored as objects in the cluster,
meaning they can be

stored and versioned as code and deployed like any other cluster
resource. Once a role has

been defined, it is “bound” to one or more subjects using second Kubernetes object called a

kube-apiserver –authorization- =Example,RBAC –other- –more-mode options options

Source: ARMO

https://www.armosec.io/
https://www.armosec.io/blog/a-guide-for-using-kubernetes-rbac/

15

RoleBinding. Roles can be associated with different
types of entities, like ServiceAccounts,

individual users, or groups from an external
identity provider.

Consider the following illustration. This Role allows an entity bound to that Role to
perform

several types of read actions on all Pod objects in the default namespace.

_Use Admission Controllers

Admission controllers are used by Kubernetes to govern and enforce how the cluster is
used

by restricting the conditions under which a resource can be created. This process
acts as a

gatekeeper for intercepting (authenticated and authorized) API requests.
Then, either allowing,

modifying or rejecting them after authentication and authorization.

An admission controller can be considered either internal or external, from the
perspective of

the API server. Internal admission controllers run as code inside the API
server itself to allow

customizing the admission process. External admission controllers
sit outside the API server

and are configured as a webhook to which the API server
forwards incoming requests for

validation.

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace:

 name: read-user

rules:

– apiGroups: []

 resources: []

 verbs: [, ,]

default

“”

“pods”

“get” “watch” “list”

https://www.armosec.io/blog/kubernetes-admission-controller/

16

A common use case for admission controllers is to require incoming resources to
comply with

established security policies or best practices. For example, it is common to
deny admission

for Pods which attempt to run as the root user, or to require that Pods
mount their root

filesystems in read-only mode. These types of controls can greatly
reduce the impact of a

potential pod compromise, and should be considered a matter of
best practice.

While Pods are the predominant focus of current security policies, other resources are

security-relevant, and may also be targeted for validation. External admission
controllers, such

as Kyverno and OPA Gatekeeper, serve as policy systems. Their main
function is to target

specific resources for validation against custom logic. For instance,
it can prevent insecure

Service configurations. It can also require organization-specific
metadata, such as an asset

owner label.

In past versions of Kubernetes (from 1.3 through 1.24), the need to enforce Pod-level
security

settings was met by a built-in PodSecurityPolicy (PSP) admission controller.
Over time, the PSP

controller became the de facto standard for Pod security in a
Kubernetes cluster. However, in

order to improve the API design and extend
admission-time validation to other resource types,

the PSP type and associated
admission controller were removed in Kubernetes v1.25. Lacking a

built-in direct
replacement, several parallel alternatives are now available to cluster

administrators.

Starting from version 1.25, a similar mechanism known as Pod Security Admission
(PSA) was

introduced as an internal admission controller which can enforce one of
three predefined

“profiles,” or levels of hardening for all Pods within a particular
namespace. These profiles are

collectively referred to as Pod Security Standards
(PSS), and include several distinct policies

grouped in a way that reflects Kubernetes
SIG Auth’s understanding of common Pod security

context use cases.

As of the time of this writing, new features are under development or recently available
which

are likely to replace PSA in future Kubernetes versions. Validating Admission Policy (VAP) was

_Evolution of built-in Pod-level security controls

17

introduced in v1.28, offering a built-in option for applying security and
other custom policies

more granularly than possible with PSA. This option supports
Common Expression Language

policies that the API server uses to evaluate incoming
resources.

Since the removal of PodSecurityPolicy, cluster administrators must weigh the available

options for their cluster versions against their risk appetite and policy needs. This may
mean

adopting PSA, writing VAP policies, using an external admission controller, or a
combination of

those controls.

Kubernetes network policies allow you to control the network traffic between pods in a

cluster,
providing an additional layer of security. It helps to isolate the microservice

applications from
each other and allows developers to focus on application development

without requiring a deep
understanding of low-level networking.

These policies let you decide how a pod communicates with other pods, namespaces, or

IP
addresses.

Network policies cover the following:

Remember, there is a minimum of required communication and traffic to and from the node

where a pod is running is always allowed.
The Kubernetes Network policy works by allowing

you to define rules that control how pods
communicate with each other and other network

_Enforce Restrictive Network Policies

Entities You Control: You can control communication between your pods, different

namespaces, and specific IP addresses.

Selectors: You can use selectors to decide the allowed behavior in specific pods or
namespaces.

An example is specifying which pods can communicate with each other.

IP Blocks: When using IP-based policies, you define rules based on ranges of IP
addresses (CIDR ranges).

18

endpoints in a cluster. If selectors match a pod
in one or more NetworkPolicy objects, then the

pod will accept only connections that are
allowed by at least one of those NetworkPolicy

objects. A pod that is not selected by any
NetworkPolicy objects is fully accessible.

Kubernetes is an orchestration system for containerized workloads, typically using
containerd,

CRI-O or Docker as the underlying Container Runtime. While many
container security options

are configurable through the Kubernetes API, there are
controls and behaviors which can

further which can’t
be directly controlled from within the

Kubernetes API.

reduce a container’s inherent risk

Container runtime hardening is a critical aspect of securing containerized applications. It

involves implementing various security measures to protect the container runtime

environment
from potential vulnerabilities and attacks. One important step in container

runtime hardening is
ensuring that only trusted container images are used. Regular scanning

and verification can
detect known vulnerabilities. Additionally, implementing strong access

controls and isolation
mechanisms helps prevent unauthorized access and lateral movement

within the container at
runtime. Regular updates and patches to the container runtime

software are also essential to
address any newly discovered security vulnerabilities. By

prioritizing container runtime
hardening, organizations can enhance the overall security

posture of their containerized
applications.

Pods and Pod-controlling resources like Deployments and Jobs make it easy to start a

containerized application by simply specifying the name of an image to run. However,
just as

care should be taken not to run untrusted software on a local workstation,
images should be

evaluated for trustworthiness before being run in a cluster.

Container

_Container Runtime Hardening

_Use Trusted Images with Proper Tags

https://www.armosec.io/glossary/container-security/

19

Public container registries

supply chain security.

 cosign

 like Docker Hub can contain outdated, unmaintained, and
even

malicious images in addition to the many legitimate and trustworthy images hosted
there.

Developers should ensure that any public images they use are maintained in
accordance with

their organization’s security policies. For example, images should only
be pulled from

registries controlled by trusted entities, to reduce the likelihood of pulling
a malicious image.

This might mean that only approved third-party registries may be
used (e.g. “only images from

the nginx organization on Docker Hub may be used”), or
that all third-party images must first

be copied into a central private registry before being
used. Admission controllers can be used

to restrict which registries are permissible for
pulling cluster images.

Regardless of where an image is pulled from, it is important for software to be uniquely
and

immutably identifiable. In a Kubernetes-orchestrated container context, this means
that the

image used in a Pod should include a tag which uniquely identifies the image to
be pulled.

 This requires at least eliminating the use of so-called floating tags, like
“latest”, which are

updated periodically to point to new versions of the image. An even
better practice is to

identify images based on their SHA (Secure Hash Algorithm),
instead of a tag version.

This is a bit less readable for humans, but ensures that the same image will be pulled

even if tags are modified or removed from the registry.
Admission controllers can also

be used to enforce the use of SHAs as image identifiers,
as well as to mutate workloads to

replace tags with SHAs, if desired.

While not yet universally imposed, cryptographic image provenance is steadily
progressing

from optional measure to mandatory requirement. As industry standards,
regulations, and

security frameworks evolve, verifying image origins is increasingly
necessary before

deployment in today's ecosystem. Ensuring software integrity requires
verifying not just

 the image itself, but its entire journey, which is generally referred to as

This means checking the signature attached to the image, as well
as other build artifacts

involved in its creation. This chain of trust begins with developers
and extends through

 the build environment, ending in the container runtime where the
journey ends. Securing

 each step fosters confidence in the software's authenticity and
prevents unauthorized

modifications along the way. While this adds complexity for
maintainers, security-conscious

developers can take the lead by signing their own
images and artifacts. Tools like

https://www.armosec.io/glossary/container-image/
https://www.armosec.io/blog/software-supply-chain-security/
https://docs.sigstore.dev/signing/signing_with_containers/

20

_Reduce Container Attack Surface

Despite the name, containers are not virtual machines, and do not inherently isolate an

application enough to prevent it from abusing its underlying node or other workloads.

Containers describe an environment to be used for starting a process on the underlying

node, but that process shares the memory, CPU, and certain OS and filesystem
resources of the

node itself. As such, containers should be crafted in a way that protects
the node and other

workloads if the container were to become compromised or
malfunction.

Many of these concerns can be configured and enforced through the Kubernetes API,
as

described in the previous section on using admission controllers. Other factors,
however, must

be addressed at image creation time, beyond the scope of Kubernetes
API controls.

One major threat: running containers as the root user. In this scenario, the container
gains the

same powerful privileges as the node itself, making it much harder to contain
and potentially

allowing privilege escalation if vulnerable. Workloads typically should not
need to run as root,

but the default user of many common base images is still root, so
workload creators must take

care to change the user when crafting their container
image.

Code

The code layer is also referred to as application security, with emphasis on the security
of the

actual logic used by any of the applications running in the container. It is also the
layer over

which businesses have the greatest control. Attackers often target application
code because

it's frequently updated, less scrutinized, and directly exposed to the
internet. If other system

components are secure, this becomes their primary focus.

can be used to create digital signatures, and admission controllers can require and

verify these signatures at cluster admission time.

21

_Scan For Vulnerabilities

Most applications rely heavily on open-source packages, libraries, and other third-party

components. As a result, a vulnerability in any one of these dependencies can affect the

security of the whole application. The more dependencies an app has, the higher the
odds: at

least one is probably already vulnerable.

Attackers frequently target workloads by exploiting known vulnerabilities in widely used

dependency code. Therefore, some mechanism is needed to periodically verify that
those

dependencies are up to date and vulnerability-free, to the extent possible. In
practice, this

often means including scanners at various points in the lifecycle of a
container image. These

scanners will scan the image to identify the software contained
in it, and issue some form of

warning if the software version in use contains a known
vulnerability. This warning may come

in the form of a blocked CI/CD pipeline, rejected
cluster admission, or an issue opened in a

bug tracking system.

Scanning can be made more compute-efficient and precise by generating and including
one or

more (SBOMs) alongside an image at build time. An
SBOM gives you

a clear, exact record of software in your image, thanks to precise
versions from package

management tools. This improves scan time because an image
does not need to be pulled and

have its filesystem examined to identify packages. The
packages are already listed in the

SBOM, so a scanner needs only to retrieve the
SBOM and compare the listed components

against its vulnerability database.

SBOM scanning is becoming mainstream, and is not without trade-off's. For example,
SBOMs

must contain a complete and accurate list of packages to correctly assess the
vulnerabilities

contained in the associated image. SBOMs are only as trustworthy as
their creators. Tools must

accurately capture all software in the image, and the list must
remain tamper-proof. While

signatures can verify integrity, completeness still depends
on the tools and image structure.

Software Bills of Materials

https://www.armosec.io/glossary/kubernetes-sbom/

Implementing Kubernetes
Security Best Practices

There are a variety of security frameworks that are applicable to Kubernetes. Many
prominent

pre-Kubernetes frameworks, like MITRE and DISA STIGs, have been
updated to include

Kubernetes-specific concerns. Additionally, a number of existing
governing bodies have

published new guidance specifically covering Kubernetes
security, including the Center for

Internet Security (CIS), and the US National Institute of
Standards and Technology (NIST). Other

existing security standards like PCI-DSS and
SOC may be relevant for certain industries or

types of Kubernetes users.

Organizations can use these frameworks as a guide for implementing security
measures on

their Kubernetes infrastructure. Organizations should account for their risk
tolerance and the

inherent tradeoffs between security, cost, and accessibility/friction.
The CIS benchmark is

commonly used as a starting point to ensure that a Kubernetes
cluster itself has been

appropriately hardened to host production workloads.

There is a lot to do on many levels to secure Kubernetes infrastructure. It is a
continuous

process of patching and hardening that will keep your workloads, business
and customers safe.

Security Frameworks

22

Containers running a variety of open-source software and other software packages,
may be

attacked via an exploit before it can be patched through routine updates.
Hence, it is critical to

scan images to identify high priority vulnerabilities and prioritize urgent workload updates,

Security Updates for the Environment

while keeping up with software updates. Using Kubernetes’
rolling update capability, it is

possible to gradually upgrade a running application by
updating it to the most recent version

available on the platform.

Kubernetes Security Context is a set of security settings that provides the ability to
define

privilege and access controls for pods or containers. Each pod and container has
its own

security context, which defines all of the privileges and access control settings
that can be

used by a container. These settings encompass a range of different
configurations such as

being able to run privileged, whether a container’s root
filesystem should be mounted as read-

only, access control based on UID and GID,
system-level capabilities, and whether built-in

Linux security mechanisms such as
seccomp, SELinux, and AppArmor should be leveraged.

Security context values can greatly reduce the impact of a successful compromise. As a
result,

Pods should be held to very high standards at admission time. In addition to
preventing known

unsafe values, newer policies also require explicitly setting
preemptively safer configuration.

For example: requiring a container to drop all unused
capabilities, even those which are

currently believed to be safe.

Moreover, a pod-level security context will also result in settings being applied to
volumes

when they are mounted. Pod-level security contexts will result in constraints
being applied to

all containers that run within the pod in question. In cases where the
same settings are not

ap[plicable to all containers in a given pod, Kubernetes allows you
to specify security contexts

for individual containers as well.

Security Context

23

Resource Management

A major feature of Kubernetes is the ability to intelligently schedule workloads across
nodes.

In determining an appropriate node for a particular Pod, the scheduler can
account for the

compute resources (CPU and memory) a Pod requires. To make use of
this feature, a Pod must

first specify how much CPU and memory it needs to run, and
can optionally indicate an upper

limit which it expects to reach. If no limits are specified,
there is no implicit constraint on the

resources available to a workload. This means that
a compromised or inefficient workload can

consume all the resources on a node,
leading to a potential denial of service for other

workloads.

Furthermore, the effectiveness of auto-scaling features like Horizontal or Vertical Pod

Autoscalers (HPA and VPA) depends on the behavior of an application under load and
the

expected changes in its resource usage. To optimize the use of these features, it is

recommended to define meaningful requests and limits for the target workload. This
allows for

better resource allocation and ensures that the auto-scaling features can
function properly.

Having said that, Pod requests and limits are not required by Kubernetes itself. Many

organizations choose to enforce this requirement using an admission controller, in order
to

ensure workloads can be properly scheduled.

Shift Left

24

Shift left security involves conducting security testing early in the container development

process, allowing for earlier identification and resolution of vulnerabilities. By catching

security issues early in the software development lifecycle (SDLC), it helps reduce the
time

spent fixing them later. This results in a shorter development cycle, improved
overall security,

and faster deployments.

It is good practice if the security controls in your Kubernetes security scanners can be

enforced in a CI/CD pipeline. However the ultimate in shifting left is reaching developer

workstations with the controls mentioned above. Thuse, providing timely feedback to

developers and preventing insecure workloads from ever being committed or built.

Conclusion

Containerized applications have significantly shaped today's computing landscape. As

enterprises increasingly migrate applications to cloud-native setups, Kubernetes
emerges as

a pivotal open-source orchestrator driving continuous growth. Its role in
simplifying

deployment, scaling, and orchestrating diverse workloads on shared
infrastructure brings

myriad advantages. However, this transition introduces security
complexities that demand

attention.

Ensuring security across the orchestration layer, underlying infrastructure, and
applications

themselves is a necessity. The thriving Kubernetes ecosystem, supported
by a robust

open-source community, offers many tools and evolving, user-centric
processes tailored to

managing complex applications at scale. Fortunately, most
security processes and controls

remain familiar, necessitating only minor adjustments in
a Kubernetes context. Moreover, the

transition to Kubernetes presents organizations
with a prime opportunity to reassess their

existing security protocols. It allows them to
retain effective methods while updating or

replacing outdated strategies unfit for the
demands of a cloud-native environment.

25

About Armo

ARMO’s mission is to build an end-to-end Kubernetes security platform, powered by

open source. A platform which covers all Kubernetes security issues without adding to

engineers’ burden. ARMO focuses solely on open source based CI/CD & Kubernetes

security, allowing organizations to be fully compliant and secure from code to
production. Our

solutions make security simple and frictionless for DevOps and are
embraced by security.

26

ARMO Platform

ARMO Platform is an enterprise-grade Kubernetes Native Application Protection
Platform

(KNAPP) that’s widely used by DevOps teams. It is powered by Kubescape,
the fastest growing

open-source project for Kubernetes security.
Armo Platform solves one of the main challenges

in addressing vulnerabilities and
misconfigurations - the extensive analysis required to ensure

changes won’t disrupt the
application. ARMO Security Co-Pilot is the first Kubernetes-specific

solution that
analyzes applications in real-time. It filters out irrelevant vulnerabilities and

policies and
generates safe remediation suggestions and security policies that won’t break

applications. Leaving your applications secure and performant.

If you want to learn more about the world's most comprehensive
Kubernetes security platform you can simply book a demo meeting here.

Book a demo

Book a Demo

https://www.armosec.io/book-demo/

Join the discussion
on Slack

Get involved
on Github

The Makers of Kubescape

Follow us

on X

Sign up for
ARMO Platform

https://www.armosec.io/blog/join-the-conversation-on-kubescapes-slack-channel/
https://twitter.com/armosec
https://github.com/kubescape/kubescape
https://cloud.armosec.io/account/sign-up

	Kubernetes Security Best Practices
	Whitepaper-Kubernetes Security Best Practices 01.2
	Whitepaper-Kubernetes Security Best Practices 02
	Whitepaper-Kubernetes Security Best Practices 03
	Whitepaper-Kubernetes Security Best Practices 04
	Whitepaper-Kubernetes Security Best Practices 05
	Whitepaper-Kubernetes Security Best Practices 06
	Whitepaper-Kubernetes Security Best Practices 07
	Whitepaper-Kubernetes Security Best Practices 08
	Whitepaper-Kubernetes Security Best Practices 09
	Whitepaper-Kubernetes Security Best Practices 10
	Whitepaper-Kubernetes Security Best Practices 11
	Whitepaper-Kubernetes Security Best Practices 12
	Whitepaper-Kubernetes Security Best Practices 13
	Whitepaper-Kubernetes Security Best Practices 14
	Whitepaper-Kubernetes Security Best Practices 15
	Whitepaper-Kubernetes Security Best Practices 16
	Whitepaper-Kubernetes Security Best Practices 17
	Whitepaper-Kubernetes Security Best Practices 18
	Whitepaper-Kubernetes Security Best Practices 19
	Whitepaper-Kubernetes Security Best Practices 20
	Whitepaper-Kubernetes Security Best Practices 21
	Whitepaper-Kubernetes Security Best Practices 22
	Whitepaper-Kubernetes Security Best Practices 23
	Whitepaper-Kubernetes Security Best Practices 24
	Whitepaper-Kubernetes Security Best Practices 25
	Whitepaper-Kubernetes Security Best Practices 26

	Last slide
	Ebook
	Ebook_compressed
	Ebook_compressed
	Ebook_compressed (1)
	Ebook_compressed (1)
	Ebook 57

